Contractor: INCD URBAN-INCERC
Cod fiscal : RO26752660 (anexa la procesul verbal de avizare internă nr.18/15.04.2020)

De acord,
DIRECTOR GENERAL
CSI/Conf.univ.dr.arh.dr.hab. Vasile Meșteșă

Avizat,
DIRECTOR DE PROGRAM
CSI/Dr.ing. Claudiu-Lucian Matei

RAPORT DE ACTIVITATE AL FAZEI

Contractul nr.: 24N/2019
Proiectul: Soluții sustenabile pentru asigurarea sănătății și securității populației în conceptul inovării deschise și a prezerării mediului înconjurător
Faza 6: Elaborarea de sisteme multistrat din produse de finisare/protecție cu adăos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea soarelui. Testarea proprietăților termoizolate
Termen de încheiere a fazei: 15.04.2020

1. Obiectivul proiectului: Prezentul proiect are ca obiectiv central dezvoltarea unor tehnici de valorificare a deșeurilor agricole și a sub-produselor industriale în domeniul construcțiilor sustenabile, în vederea prezerării mediului înconjurător, cu un puternic impact asupra calității mediului interior construit, vizând în special asigurarea sănătății și securității populației.

2. Rezultate preconizate pentru atingerea obiectivului:

- Studiu privind stadiul actual de cunoaștere și utilizare a deșeurilor agricole, a micro-și macro-sferelor minerale și sintetice și a deșeurilor industriale, la realizarea de ecomateriale durabile, eficiente energetic;
- Cercetări privind stadiul actual al cunoașterii în domeniul asigurării sănătății și securității populației prin utilizare de materiale avansate și ecologice;
- Studiu privind elaborarea de rețete de bază pentru produse de finisare/protecție cu adăos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea soarelui;
Proiectare și realizare/implementare Stand experimental la scară naturală (S1) cu posibilitatea monitorizării parametrilor mediului interior și a variațiilor de poluanți conform unui profil prestabilit;

Studiul privind evaluarea potențialului subproduselor industriale ca materiale alternative pentru produse inovative utilizate în infrastructuri / construcții și elaborare rețete de bază pentru produse de finisare/protecție cu adaosuri din deșeuri agricole vegetale și/sau animale;

Elaborarea de sisteme multistrat din produse de finisare/protecție cu adaos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea soarelui. Testarea proprietăților termoizolatoare;

Concepcare model matematic multiparametric pentru evaluarea confortului termic și a calității aerului interior pentru diferite strategii de ventilație. Activități experimentale pe suportul S1 (sezon rece);

Valorificarea deșeurilor în industria materialelor de construcții și analize economice de tip LCA. Elaborarea de sisteme multistrat din produse de finisare/protecție cu adaos de deșeuri agricole, vegetale și/sau animale, cu testarea proprietăților termoizolatoare;

Creșterea complexității modelului matematic multiparametric prin integrarea unor funcții de transfer aferente poluanților uzuali. Activități experimentale pe suportul S1 (sezon cald);

Evaluare parametricală de durabilitate și microstructurală, scenarii comparative (ante- și post-tratament) de comportament în corelare cu factorii causali în diferite condiții de mediu. Elaborarea de sisteme multistrat de finisare/protecție cu adaosuri mixte din deșeuri agricole (vegetale, animale), s.a. Testarea proprietăților termoizolatoare;

Intervaldare numerică preliminară a modelului matematic multiparametric pentru evaluarea confortului termic și a calității aerului interior;

Cercetări experimentale pentru elaborarea de produse/sisteme de finisare cu adaosuri din deșeuri agricole, s.a., cu potențial de protecție a construcțiilor la factori agresivi/corozivi de mediu. Analiză impactului economic al introducerii pe piață de noi tipuri de materiale eco-durabile, cuantificarea incertitudinilor;

Cercetări experimentale privind comportarea sistemelor de finisare/protecție cu adaosuri din deșeuri agricole s.a., la solicitări agresive de mediu simulat în condiții acelereate de laborator (rezultate parțiale);

Concept, dimensionare, proiectare și realizare Stand experimental (S2), pentru evaluarea emisiilor din materiale și structuri complexe de construcții/ materiale cu adaosuri din deșeuri agricole;

Studiul privind durabilitatea materialelor inovatoare de finisare/protecție cu adaosuri din deșeuri agricole s.a., la acțiunea factorilor de mediu „în situ” și în condiții acelereate de laborator (rezultate finale). Evaluarea strategiilor de transfer tehnologic de tip „know-how” către mediul privat pentru promovarea produselor inovative;

Validare experimentaală model matematic multiparametric pentru evaluarea confortului termic și a calității aerului interior pentru diferite strategii de ventilație. Experimente pe suportul S2 pentru stabilirea profilului de emisie a poluanților degajați de diferite materiale și structuri complexe;
Cercetări privind caracteristicile de izolare termică a sistemelor de finisare/protecție cu adaosuri din deșeuri agricole ș.a., ulterior acțiunii factorilor agresivi/corozivi de mediu;
Definirea și configurarea unor elemente de proiectare a unui algoritm tehnologic eco-sustenabil de valorificare a nano-materialelor și subproduselor industriale;
Instrument inovativ de lucru (model matematic multiparametric validat experimental) care să contribuie la asigurarea unui mediu construit sănătos. Inițierea unui serviciu inovator de evaluare a calității aerului interior;
Sinteza cercetărilor privind materialele inovatoare cu adaosuri din deșeuri. Principii de bază privind realizarea, condiții și domenii de utilizare recomandate. Ghid de bune practici privind valorificarea eficientă deșeurlor industriale.

3. Obiectivul fazei: Elaborarea de sisteme multistrat din produse de finisare/protecție cu adaos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea soarelui. Testarea proprietăților termoizolatoare

4. Rezultate preconizate pentru atingerea obiectivului fazei:
- Elaborarea de sisteme multistrat din produse de finisare/protecție cu adaos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea soarelui (CSFS);
- Determinarea principalelor caracteristici fizico-mecanice (grosime, aderență la suport de mortar, gips-carton, ș.a.) Ale sistemelor multistrat obținute în cadrul actualei faze;
- Studierea coeziunii dintre straturile sistemelor multistrat realizate din produsele de finisare/protecție cu adaos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea soarelui (CSFS);
- Testarea proprietăților termoizolatoare ale sistemelor multistrat obținute în cadrul actualei faze;
- Diseminarea rezultatelor cercetării.

5. Rezumatul fazei:
În cadrul acestei faze a cercetărilor au fost tratate următoarele subiecte principale:

Aspecte actuale de referință privind valorificarea în construcții a deșeurlor agricole vegetale (ligno) celulozice - cojile de semințe de floarea-soarelui. Caracteristici termice

Au fost prezentate aspecte generale specifice cadrului național de planificare, dezvoltare și implementare a unui management integrat, durabil al deșeurlor, cu particularizarea locului pe care îl ocupă în acest context deșeurile din cojii de semințe de floarea-soarelui rezultate la obținerea uleiurilor de floarea-soarelui, ținând cont de faptul că producătorii de ulei de acest tip se confruntă cu stocuri mari de deșeuri, aspect valabil atât la nivel internațional cât și la noi în țară.
Au fost fundamentate aspecte legate de caracteristicile termice ale deșeurilor vegetale, în general, dar și ale plantelor de floarea-soarelui, inclusiv ale cojilor de semințe.

Astfel, au fost prezentate detalii privind structura supramoleculară (Fig. 1) și cea spațială a celulozei (Fig. 2), structura ligninei, componente chimice de bază ale deșeurilor vegetale dar și ale cojilor de semințe de floarea-soarelui.

Fig. 1 Structura supramoleculară a celulozei

Fig. 2 Structura spațială a celulozei

Prin prezentarea proprietăților fizice și chimice ale acestora a fost confirmat științific potențialul lor de utilizare în materiale inovatoare și elemente de construcție, în cadrul preocupărilor economiei circulare la nivel mondial dar și național, odată cu scăderea resurselor de materii prime.

Pornind de la principalele proprietăți ale fibrelor vegetale naturale (conductibilitatea/conductivitatea termică, termostabilitatea, rezistența la aprindere) au fost, de asemenea, prezentate câteva exemple relevante de studii și cercetări experimentale realizate pe plan mondial și național privind caracteristicile termice ale materialelor de construcție obținute prin valorificarea plantelor și cojilor de semințe de floarea-soarelui sub
diferite forme: panouri și plăci pentru termoizolarea pereteților și planșeelor construcțiilor, cărămizi refractare, pieze de ceramică din amestecuri de argilă-cenușă din coji de semințe de floarea-soarelui, material cu rol de adaos pentru creșterea structurii poroase a unor materiale compozițe utilizabile în construcții, cu avantajele și dezavantajele aferente.

Elaborarea de sisteme multistrat din produse de finisare/ protecție cu adaos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea-soarelui (CSFS)

Pentru a sublinia etapele de progres realizate pe această direcție de cercetare a proiectului, în cadrul lucrării s-a efectuat o prezentare sintetică a rețetelor de bază și a rezultatelor experimentale obținute în etapa anterioară privind sistemele monostrat pentru produse de finisare/protecție cu adaos din deșeu agricol vegetal de CSFS, considerându-se că produsele elaborate și testate în etapa anterioară au potențialul de a genera protecții cu caracteristici fizico-mecanice mai performante la aplicarea produselor inovatoare sub formă de protecții multistrat.

Criterii de elaborare a sistemelor multistrat din produse de finisare/ protecție cu adaos din deșeuri de CSFS. Stabilirea programului experimental al fazei actuale

Sunt prezentate elementele utilizate la elaborarea/îmbunătățirea performanțelor noilor sisteme (punere în operă, coezioni între straturi, aderență la suport), comparativ cu sistemele monostrat realizate în faza 3:
- Au fost menționate unele rețete de bază ale produselor inovatoare realizate dar în toate cazurile a fost modificat modul de punere în operă a straturilor, diferențiat în funcție de natura suprafeței-suport (gips-carton sau mortar de ciment) și de aplicabilitatea fiecărui amestec în parte, de la caz la caz (cu pensula sau cu drișca de inox);
- S-a introduș un alt tip de amorsă, pentru fiecare produs peliculogen (liant) în parte, amorsă obținută prin înglobarea unei cantități fixe de adaos vegetal de CSFS din fracțiunea dimensională de φ4 mm, amorsarea suprafețelor-suport fiind efectuată prin pensulare.
- Pentru a studia posibilitatea extinderii domeniilor de utilizare/proprietaților caracteristice ale produselor/sistemelor multistrat, au fost introduse două noi produse peliculogene utilizându-le pe fiecare în parte ca liant;
- Pentru sistemele care în faza a 3-a au fost caracterizate prin aderență mici la suprafețele-suport, s-a stabilit o nouă rețetă de bază cu scopul de a îmbunătăți cel puțin această performanță a produsului inovator cu adaos de CSFS/sistemului multistrat. Totodată și punerea în operă a fost modificată, având în vedere aplicarea cu pensula a amorzei cu adaos de CSFS φ4, conform celor precizate anterior, celelalte straturi fiind aplicate cu drișca de inox, ca în cazul tuturor celorlalte sisteme aplicate în această fază.
- Ca și în cazul sistemelor monostrat elaborate într-o etapă anterioară a proiectului, și în această fază, pentru sistemele multistrat, au fost luate în analiză următoarele aspecte:
 - Criterii de selectare a produselor peliculogene de finisare/protecție utilizate ca liant. Pentru studierea posibilității de extindere a domeniilor de utilizare/proprietăților
caracteristice ale produselor/sistemelor multistrat, au fost introduse ca liant două noi produse peliculogene, rezistente la condiții de umiditate crescută, formare de mucegai, respectiv și la acțiuni agresive ale mediului atmosferic exterior. Astfel, s-au introdus produsele notate cu 2415 (vopsea lavabilă antimucegai, pentru baie și bucătărie, pe bază de copolimeri acrilici, pigmenti, materiale de umplutură și adjuvanți) și 2429 (vopsea ultralavabilă de interior și exterior, cu silicon). De asemenea, au fost utilizate aceleași produse peliculogene din faza 3 a proiectului, anume cele notate cu RM, 2421 și 2427.

- **Stabilirea categoriilor dimensiionale (dimensiunea maximă) de deșeu vegetal din CSFS.** Luând în considerare în principal rețelele de bază ale produselor /sistemelor mono- sau bistrat care au dat cele mai mari valori mediile ale aderențelor la suport (RMabbb, RMaccă, RMadd, 2421A și 2427A), în această fază au fost utilizate deșeuri de CSFS din fracțiunile dimensiionale φ4 mm, φ6 mm, φ8 mm, utilizate, în funcție de rețeta de bază, ca adaos unic sau ca adaos mixt din 2 sau 3 fracțiuni dimensiionale de CSFS.

- **Rețelele de bază elaborate.** Rețelele de bază au fost în mare parte cele cu care au fost realizate sistemele mono- sau bistrat dar și unele în care a fost mărită cantitatea de liant, urmărind îmbunătățirea aderenței la suport și coeziunea dintre straturi.

- **Structura și modul de aplicare a sistemelor pe suprafețe-suport din gips-carton și mortar de ciment.** Ca principiu, la începerea părții experimentale a proiectului, s-a hotărât ca într-o primă etapă (faza a 3-a) să fie testată aplicarea produselor CSFS-liant într-un număr de straturi similar cu cel de utilizare curentă a produselor peliculogene liant, pentru ca în etapa următoare, respectiv faza actuală a proiectului, să se testeze posibilitatea suplimentării numărului de straturi. De asemenea, s-a stabilit utilizarea unei amorse cu adaos de CSFS φ 4 mm, amorsa aplicată la sistemele din etapa anterioară neconținând vreun tip de deșeu. Acest aspect a vizat obținerea unei aderențe mai bune între amorsă și stratul al doilea, o îmbunătățire a coeziunii dintre straturi dar nu în ultimul rând posibilitatea ca toate tipurile de sisteme obținute să fie aplicabile și pe gips-carton, în ciuda suprafeței lise a acestuia. Modul de aplicare a fost stabilit în principal în funcție de aplicabilitatea produselor rezultate alegând, acolo unde era posibil, aplicarea cu drișca din inox, acest lucru urmând să realizeze pe de o parte, o creștere a cantității de deșeu vegetal de înglobat/de valorificat, drișca permitând aplicarea unei cantități mai mari din produsul cu adaos de deșeu, iar pe de altă parte, favorizând creșterea coeziunii dintre straturi, datorită forței aplicate perpendiculare pe suprafață, la punerea în operă a amestecului respectiv.

- **Grosimile, aderențele sistemelor la gips-carton respectiv mortar de ciment.** În vederea testării caracteristicilor termice ale sistemelor multistrat s-a urmărit înglobarea unei cantități cât mai mari de adaos vegetal de CSFS, prin aplicarea produselor în principal cu drișca de inox. Pentru creșterea aderențelor sistemelor multistrat la cele două tipuri de materiale (mortar de ciment și gips-carton) s-au aplicat măsurile descrise la punctele anterioare: introducerea amorsei cu adaos vegetal, creșterea cantității de liant în unele rețete de bază, utilizarea de adaosuri mixte din 2 sau 3 fracțiuni dimensiionale, aplicarea cu drișca de inox a amestecurilor CSFS-liant obținute, în cea mai mare parte a straturilor din structura noilor sisteme.
Sisteme multistrat obținute din produse de finisare/protectie cu adaos din deșeuri vegetale rezultate la obținerea uleirilor de floarea soarelui

În această fază au fost elaborate 12 sisteme multistrat de tip CSFS-liant care au fost aplicate atât pe suprafețe-suport de gips-carton cât și pe mortar de ciment, sisteme prezentate tabelat în lucrare atât sub aspectul rețetelor de bază ale materialelor inovatoare obținute, tip CSFS-liant, numărul de straturi pentru fiecare tip de sistem cât și detalii privind aplicarea fiecărui strat în funcție de sistemul multistrat. Pornind de la sistemele din 1-2 straturi elaborate în etapa anterioară, în faza actuală au fost concepute și aplicate următoarele sisteme multistrat: tip CSFS-RM (RMabbb, RMacc, RMaddl), tip CSFS-2421 (2421Ax, 2421Bx și 2421Cx), tip CSFS-2415 (2415a și 2415b), tip CSFS-2427 (2427Ax și 2427Az), tip CSFS-2429 (2429a și 2429b). În lucrare este prezentat un bogat material fotografic referitor atât la aspectul deșeurilor din coji de semințe de floarea-soarelui utilizate (CSFS), cât mai ales la aspectul sistemelor multistrat realizate și aplicate pe mortar de ciment și pe gips-carton. În continuare, sunt prezentate exemple ilustrative edificatoare în acest sens.

În urma examinării sistemelor multistrat astfel aplicate s-au efectuat observații detaliate pentru fiecare tip de sistem multistrat dar, ca observație generală, s-a constatat că în cazul celor mai multe dintre vopsitele-liant (RM, 2421, 2415, 2427, 2429), amestecurile CSFS-liant rezultate au fost aplicate pe suprafețele din mortar de ciment în cantități mai mari, pe fiecare strat, comparativ cu aplicarea acelorasi amestecuri pe suprafețele de gips-carton, diferență care apare ca un efect cumulativ al caracterului abraziv atât al suprafeței-suport pe care s-a aplicat amorsa cu adaos din deșeu vegetal cât și ulterior, al suprafeței stratului de amorsă menționat. Stratul final al acoperirilor aplicate pe mortar de ciment au în general un aspect mai dens, mai tasat, mai împășlit comparativ cu sistemele similare aplicate pe gips-carton.

| Sistemul RMacc, aplicat pe gips-carton | Sistemul RMacc, aplicat pe mortar de ciment |
Cercetări experimentale pentru determinarea principalelor caracteristici fizico-mecanice (grosime, aderență la suport de mortar, gips-carton, ș.a.) ale sistemelor multistrat obținute în cadrul actualei faze

Principalele caracteristici fizico-mecanice ale sistemelor multistrat obținute în această fază a proiectului au fost grosimea și aderența la suport, aceste mărimi fiind determinate experimental pentru fiecare variantă de produs, respectiv de sistem multistrat, în funcție de natura suprafeței-suport pe care a fost aplicată: gips-carton și mortar de ciment. Aderența la suprafața-suport a fost efectuată conform standardului SR EN ISO 4624:2016. În afara analizei și interpretării datelor experimentale privind caracteristicile fizico-mecanice ale sistemelor multistrat s-a efectuat, comparativ, și o analiză a sistemelor multistrat vs. sisteme unistrat, după aceeași criterii. Pentru ușurința realizării și urmăririi acestor analize și interpretări, datele experimentale ale celor două grupe mari de sisteme au fost prezentate comparativ, într-un număr de 20 de tabele. Rezultatele sunt redate pe scurt în cele ce urmează, conform modului de prezentare din lucrare.
Determinarea principalelor caracteristici fizico-mecanice ale produselor multistrat aplicate pe supurt din mortar de ciment

Produsele/sistemele multistrat tip CSFS-RM
Tabelat sunt prezentate în lucrarea în extenso valorile medii ale grosimilor totale pentru sistemele de tip CSFS-RM realizate în trei straturi aplicate pe suprafețe din mortar de ciment peste amorsa cu adaos de CSFS (RMabbb, RMacc și RMaddd), prin comparație cu cele ale sistemelor similare realizate din câte două straturi peste amorsă (RMabbb, RMacc, RMadd), realizate în faza a 3-a a proiectului. Din datele obținute rezultă următoarele:

- Grosimile totale medii: au crescut comparativ cu cele ale sistemelor realizate în faza anterioară (1,34 – 1,57mm) ajungând până la valori de 2,47-3,19 mm, explicația fiind aplicarea primului strat peste amorsă cu pensula apoi straturile 3 și 4, cu drîșca de inox. Cea mai mare creștere s-a determinat la sistemul RMadd, unde adaosul a fost pe o parte unul bicomponent și nu monocomponent, pe de altă parte, fiind înglobată și cea mai mare cantitate de adaos vegetal (2,50g comparativ cu 1,5g în fiecare dintre celelalte două sisteme).

- Aderențele medii: au scăzut ușor față de cele ale sistemelor realizate în faza anterioară (1,18 -2,51MPa), ajungînd până la valori de 1,79 – 2,17 MPa, odată cu creșterea conținutului de adaos de CSFS, creșterea numărului de fracțiuni dimensionale de deșeu înglobat și creșterea dimensiunii maximale a fracțiunilor dimensionale. Cu toate acestea, este de menționat că toate sistemele multistrat de tip CSFS-RM au aderențe mai mari de 1 MPa, ceea ce le permite în limitele unui finisaj bun pentru o suprafață-supurt;

Produsele/sistemele multistrat tip CSFS-2421
Din datele obținute pentru sistemele 2421Ax 2421Bx și 2421Cx a rezultat că:

- Grosimile totale medii: au crescut comparativ cu cele ale sistemelor monostrat realizate în faza anterioară (2,75 - 3 mm), ajungînd la valori de 4,77 – 6,35 mm. Cea mai mare creștere de grosime s-a determinat la sistemul 2421Ax, unde adaosul a fost tricomponent, alcătuit din două fracțiuni mari (φ4, φ6 și φ8), deși cantitatea totală de de adaos (2,5A g) a fost cea mai mică, prin comparație cu celelalte două sisteme din grupa CSFS-2421 (3A g respectiv 4,5A g). Se remarcă faptul că un alt element important care a determinat obținerea unor grosimi mai mari la sistemele 2421Bx și 2421Cx a fost aplicarea cu drîșca a tuturor straturilor ulterioare amorâr.

- Aderențele medii: au crescut față de cele ale sistemelor monostrat (0,22 - 0,34 MPa) ajungînd la valori de 0,29 - 0,30 MPa. Rezultă că deși pentru toate sistemele monostrat de tip CSFS-2421 aplicate pe mortar de ciment, aderențele medii au avut valori subunitare, specifice unui finisaj/unei protecții de slabă calitate, în această fază, suplimentarea numărului de straturi și modificările privind modul de aplicare a fiecărui sistem de acest tip au dus totuși la o îmbunătățire a aderențelor la mortarul de ciment. Sistemele de tip CSFS-2421 au cele mai slabe performanțe de aderență pentru sistemele de tip CSFS-lijant aplicate pe mortar de ciment.

Produsele/sistemele multistrat tip CSFS-2415
Din datele experimentale obținute pentru sistemele 2415a și 2415b a rezultat că:
- Grosimile totale medii: au crescut față de cea a sistemului martor, fără adaos de CSFS (0,97mm), neavând ca referință sisteme efectuate în faza anterioară, grosimile sistemelor multistrat ajungând la 2,87 – 3,88 mm, cea mai mare grosime fiind cea a sistemului 2415b, unde adaosul a fost unul tricomponent, sistemul 2415a având adaos bicomponent, la o aceeași cantitate de liant.
- Aderențele medii: au scăzut față de cea a sistemului martor, fără adaos de CSFS (2,91MPa), ajungând la valori de 1,44 – 1,80 MPa, având însă valori relativ mari, de peste 1MPa, ceea ce le caracterizează ca fiind finisaje cu o bună aderență la suprafața-suport de mortar de ciment.

Produsele/sistemele multistrat tip CSFS-2427

- Din analiza valorilor experimentale obținute pentru sistemele 2427Ax și 2427Az obținute rezultă că:
 - Grosimile totale medii: au crescut față de cea a sistemului monostrat realizat în faza anterioară (2,75 mm), ajungând la valori de 3,15 – 4,81 mm. Cea mai mare grosime s-a determinat în cazul sistemului 2427Az, unde adaosul a fost unul tricomponent, iar aplicarea tuturor straturilor, exclusiv amorasa, efectuată cu drișca de inox.
 - Aderențele medii: au fost similare cu cele ale sistemului monostrat (1,21MPa), ajungând la valori de 1,09 – 1,12 MPa, deci mai mari de 1MPa, ceea ce le caracterizează ca fiind finisaje cu o bună aderență la suprafața-suport de mortar de ciment.

Produsele/sistemele multistrat tip CSFS-2429

- Din datele experimentale obținute pentru sistemele 2419a și 2429b a rezultat că:
 - Grosimile totale medii: au fost mai mari comparativ cu cea a sistemului martor, fără adaos de CSFS (1,31 mm), neavând ca referință sisteme monostrat de acest tip efectuate în faza anterioară, grosimile sistemelor multistrat ajungând la 2,85 – 3,41 mm, cea mai mare grosime fiind cea a sistemului 2429b, unde adaosul a fost unul tricomponent, iar aplicarea tuturor straturilor, exclusiv amorasa cu deșeu vegetal, fiind cu drișca de inox.
 - Aderențele medii: au scăzut foarte puțin față de sistemul martor (2,27MPa), ajungând la valori de 2,22 – 1,74 MPa, supraunitare, asemenea unor finisaje cu o foarte bună aderență la suprafața-suport de mortar de ciment.

Determinarea principalelor caracteristici fizico-mecanice ale produselor multistrat aplicate pe suport din gips-carton

Produsele/sistemele multistrat tip CSFS-RM

- Din analiza datelor experimentale obținute pentru sistemele multistrat RMabbb, RMacc și RMadd a rezultat că:
 - Grosimile medii totale: au crescut comparativ cu cele ale sistemelor realizeate în faza anterioară (1,83 – 2,25 mm), ajungând până la valori de 2,49 – 2,90 mm, cea mai mare valoare având sistemul Rmadd, cu cea mai mare cantitate de adaos de CSFS, din două fracțiuni dimensionale.
Aderențele medii: au scăzut ușor față de cele ale sistemelor din faza anterioară (1,36 – 1,54 mm), ajungând la valori de 1,33 – 1,42 MPa, asemenea unor finisaje cu o foarte bună aderență la suprafața-suport.

Produsele/sistemele multistrat tip CSFS-2421

Din datele obținute pentru sistemele 2421Ax 2421Bx și 2421Cx a rezultat că:

- Grosimile medii totale: au crescut față de sistemul martor, fără adaos de CSFS (1,07 mm), neavând ca referință sisteme monostrat de acest tip efectuate în faza anterioară, ajungând la valori de 2,79 -2,96 mm, cea mai mare valoare având sistemul 2421Cx, cu cea mai mare cantitate de adaos de CSFS, din trei fracțiuni dimensionale.

- Aderențele medii: au scăzut față de sistemul martor, (0,69MPa), ajungând la valori de 0,22 -0,28 MPa, acestea fiind cele mai slabe performanțe de aderență pentru sistemele de tip CSFS-liant aplicate pe gips-carton.

Produsele/sistemele multistrat tip CSFS-2415

Din datele obținute pentru sistemele 2415a și 2415b a rezultat că:

- Grosimile medii totale: au crescut față de sistemul martor (0,72 mm) ajungând la valori de 1,89 – 3,85 mm, cea mai mare valoare având sistemul 2415b, cu cea mai mare cantitate de adaos de CSFS, din trei fracțiuni dimensionale.

- Aderențele medii: au crescut față de sistemul martor (1,21MPa), ajungând la valori de 1,29 – 1,40 MPa, asemenea unor finisaje cu o foarte bună aderență la suprafața-suport.

Produsele/sistemele multistrat tip CSFS-2427

Din datele obținute pentru sistemele 2427Ax și 2427Az a rezultat că:

- Grosimile medii totale: au crescut față de sistemul monostrat realizat în faza anterioară (1,21mm), ajungând la valori de 1,34 – 6,52 mm, cea mai mare valoare fiind cea a sistemului 2427Az, de asemenea, cu cea mai mare cantitate de adaos de CSFS, din trei fracțiuni dimensionale.

- Aderențele medii: au scăzut ușor față de sistemul martor (1,41MPa), ajungând la 1,18 -1,30MPa, menținându-se la valori supraunitare.

Produsele/sistemele multistrat tip CSFS-2429

Din datele obținute pentru sistemele 2427Ax și 2427Az a rezultat că:

- Grosimile medii totale: au crescut față de sistemul martor (0,74 mm), ajungând la valori de 1,96 – 3,70 mm, cea mai mare valoare fiind cea a sistemului 2429b, de asemenea, cu cea mai mare cantitate de adaos de CSFS, din trei fracțiuni dimensionale.

- Aderențele medii: au crescut față de sistemul martor (1,11MPa), ajungând la 1,46 -1,88MPa, menținându-se la valori supraunitare.

Studierea coeziunii dintre straturile sistemelor multistrat realizate din produsele de finisare/protecție cu adaos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea-soarelui (CSFS)
Comparativ cu sistemele monostrat de tip CSFS-liant realizate în faza anterioară a proiectului, la care încercarea pentru determinarea aderenței a indicat preponderent o rupere adezivă a protecției, fără diferențe majore determinate de natura suprafeței-suport în cazul sistemelor multistrat realizate în cadrul acestei faze s-au constatat următoarele:

- Considerând ruperea de natură adezivă cazul în care, la efectuarea încercării de determinare a aderenței prin fracțiune, desprinderea sistemului se face la interfața suport-protecție iar ruperea coezivă, cazul în care desprinderea protecției se produce între straturile sistemului, referitor la rezultatele experimentale obținute în cadrul acestei faze a proiectului reiese faptul că, indiferent de natura suprafeței-suport (mortar de ciment sau gips-carton), există o serie de elemente comune care favorizează manifestarea coeziunii dintre straturi (ruperea adezivă) sau lipsa coeziunii dintre straturi (ruperea coezivă);
- Din punct de vedere al rețelei de bază a produselor CSFS – liant, elementele care favorizează creșterea coeziunii dintre straturi sunt: o cantitate minimă de adaos de CSFS din punct de vedere al lucrabilității amestecului rezultat, înglobarea unui adaos format din una sau două fracțiuni dimensionale de deșeu, utilizarea în compoziția adaosului fracțiuni dimensionale mici, în special de 4mm și 6mm;
- Din punct de vedere al punerii în operă a sistemelor multistrat de tip CSFS-liant peligulogen, elementele care favorizează creșterii coeziunii dintre straturi sunt cele care favorizează ruperea adezivă a sistemelor, anume: aplicarea amorsei cu adaos de CSFS, aplicarea prin pensulare al stratului al doilea al sistemului (primul strat aplicat peste amorșă), aplicarea cu drișca de inox a celorlalte straturi ulterioare ale sistemelor; obținerea unui strat cât mai subțire, în funcție de compoziția amestecului.
- Având în vedere că, prin tematica direcției de cercetare se urmărește înglobarea, deci valorificarea unei cantități cât mai mari din deșeul de CSFS, rezultă că măsurile de creștere a aderenței la suport au determinat creșterea coeziunii dintre straturi doar până la un anumit nivel, specific fiecăruia amestec, nivel peste care (grosime crescută, conținut mare de deșeu, ș.a) au determinat scăderea acestei coeziuni.
- Din punct de vedere al aderențelor la suprafața-suport, coeziunea dintre straturi este un element pozitiv în situațiile în care rezultatul determinării aderenței la suport este supraunitar iar ruperea protecției este coezivă, din masa protecției. În asemenea cazuri, aderența reală a protecției la suport este superioară celei determinate, în ciuda unei reduceri a coeziunii dintre straturi.

Cercetări experimentale pentru testarea proprietăților termoizolatoare ale sistemelor multistrat obținute în cadrul actualei faze

Selectarea sistemelor multistrat din produse de finisare/protecție cu adaos din deșeuri vegetale de CSFS în vederea testării proprietăților termoizolatoare

Pe baza rezultatelor experimentale obținute pentru sistemele multistrat cu adaos de deșeu vegetal de CSFS, au fost selectate șapte sisteme multistrat în vederea testării proprietăților lor termoizolatoare, respectiv lianții sistemelor multistrat. Criteriile principale de alegere a acestor lianță au fost: caracteristicile fizico-mecanice (grosime, aderență, coeziune dintre straturi) ale sistemelor multistrat, la aplicarea lor pe gips-carton; domeniile
de utilizare pentru care produsele peliculogene respective au fost proiectate pentru utilizarea curentă; capacitatea lungului de a îngloba cât mai bine un cantităte cât mai mare de adăos de CSFS, realizând toodată o fixare cât mai bună a cojilor în straturile noilor materiale. Astfel, au fost alese produsele peliculogene notate prin: RM - o amortă specială, consistentă, pe bază de răsăină acrilică, ea însăși, conform fișei tehnice, aplicându-se cu drășca de inox, 2427 - o vopsea lavabilă pentru exterior, pe bază de copolimeri acrilostirenci, cu silicon și 2415 - o vopsea antimucegai, pentru baie și bucătărie, pe bază de copolimeri acrilici.

Grosimile sistemelor de testat au fost foarte mici în comparație cu grosimile materialelor tradiționale utilizate în construcții, cu caracteristici termoizolatoare, ceea ce a făcut imposibilă măsurarea directă a rezistenței termice. Suplimentar, o particularitate a produselor testate este faptul că acestea sunt aplicate pe un suport în scopul utilizării practice, nu pot utilizate ca material de sine stătător. Drept urmare, a fost necesară utilizarea unor straturi suport de gips-carton, cu grosimi suficient de mari (aprox. 12.50 mm), fiecare dintre cele șapte sisteme multistrat selectate fiind aplicat pe câte o placă de gips-carton, acestea fiind notate cu A1, A2, A3, A4, A5, B2, B3. În lucrare este prezentată tabelat notarea sistemelor multistrat (RMabb, RMacc, RMadd, 2415a, 2415b, 2427Ax și 2427Az), rețelele de bază ale produselor aplicate și tipul de răsăină a liantului în care au fost înglobate deșeurile vegetale de CSFS, notarea plăcilor de gips-carton în funcție de sistemul aplicat (A1+RMabb, A2+RMacc, A3+RMadd, B2+2427Ax, B3+2427Az, A4+2415a, A5+2415b), numărul de straturi ale sistemelor supuse testării proprietăților termoizolatoare (primele cinci sisteme având câte 4 straturi, ultimele două, câte 3 straturi), precum și grosimile medii ale fiecărei sisteme aplicat pe o singură față a fiecărei plăci de gips-carton (grosimile variați între 3,15 mm și 6,25 mm, cele mai mari aparținând plăcilor A5+2415b, cu 6,25 mm, A3+RMadd, cu 5,11 mm și A4+2415a, cu 5,00 mm). Întrucât sistemele 2415 a și 2415b au fost aplicate în 3 straturi, a rezultat că la obținerea acestor grosimi totale mari ale sistemelor multistrat au contribuit în special: pentru 2415b - prezența celor trei fracțiuni dimensionale de CSFS, într-o cantitate mare (2,5 A g) raportată la 20 g de liant 2415; pentru RMadd - aceeași cantitate de adăos (2,5A g) format din două fracțiuni dimensionale (4 și 6 mm) înglobată într-o cantitate mai mare de liant (30g), el însuși mai consistent decât liantul 2415; pentru 2415a - înglobarea unei cantități mai mici (20 A g) de adăos din două fracțiuni dimensionale (4 și 6 mm) într-o cantitate de 20g liant 2415.

De asemenea, în lucrare sunt prezentate imagini fotografice de ansamblu și detalii privind aspectul sistemelor multistrat aplicate pe plăcile de gips-carton în vederea testării proprietăților lor termoizolatoare.

Pentru determinarea rezistenței termice a protecțiilor aplicate s-a măsurat în primă fază rezistența termică a stratului suport din gips-carton fără acoperire. În etapa următoare, după ce ambele fețe ale epruvetei din gips-carton au fost acoperite cu produsul de testat, s-a determinat rezistența termică a elementului astfel obținut. În ultima etapă a fost determinată rezistența termică și conductivitatea termică a protecțiilor realizate, utilizând relațiile de calcul (1) și (2):

$$ R_V = R_{VC} - R_G \left[\frac{m^2K}{W} \right] $$ (1)
unde: R_V – rezistența termică a straturilor de vopsea; R_{VG} – rezistența termică a epruvetei din gips-carton acoperită pe ambele fețe cu vopseaua de testat; R_G – rezistența termică a epruvetei din gips-carton

$$\lambda_V = \frac{\delta_V}{R_V} \left[\frac{m^2 K}{W} \right]$$

unde: λ_V – conductivitatea termică a vopsei; δ_V – grosimea straturilor de vopsea

Măsurarea rezistențelor termice pentru analiza proprietăților de transfer termic ale protecțiilor s-a realizat prin metoda plăcii calde gardate (SR EN 12667:2002 și SR EN 12664:2002). Fiind o tehnică de măsurare în regim stăționar, metoda are avantajul că returnează rezultate cu un grad ridicat de acuratețe. Măsurarea rezistenței termice pentru o epruvetă a necesitat menținerea unui flux termic unitar q [W/m²] constant între cele două fețe ale probei. Locul unde se realizează acest fenomen, numit și zonă de testare, se află în apropierea centrului fiecărei epruvete, după cum este prezentat în figura următoare.

![Schema aparaturii de măsurare a rezistenței termice](image)

1 – placa marginală gardată rece
2 – placa de măsură rece
3 – zona de testare a epruvetei
4 – părțiile epruvetei aflate în contact cu plăcile gardate marginale
5 – rămă pentru fixarea epruvetei (doar pentru materiale vrac)
6 – placa de măsură caldă
7 – placa marginală gardată caldă

Elementele care încolțeau zona de testare se numesc zonele marginale gardate și au rolul de a împiedica transferul de căldură prin suprafețele laterale ale zonei de testare. În acest fel transferul de căldură prin epruvetă se va realiza doar între cele două fețe între care se dorescă măsurarea rezistenței termice. Când regimul termic stăționar este stabilit se măsoară fluxul termic, Q [W], ce traversează epruveta în dreptul zonei de testare. Fluxul termic unitar este determinat prin raportul dintre fluxul termic măsurat și suprafața zonei de măsură.
Concomitent cu fluxul termic, Q, se măsoară cu ajutorul traducțoarelor de temperatură plasate pe suprafețele echipamentului aflate în contact cu proba și temperaturile fețelor sale. Fiind cunoscute toate aceste mărimi, se poate determina rezistența termică a epruvetei, prin relația (3):

\[
R = \frac{T_1 - T_2}{Q} A \left[\frac{m^2 K}{W} \right]
\]

unde: \(R \) – rezistența termică a epruvetei; \(T_1 \) – temperatură pe fața superioară a epruvetei; \(T_2 \) – temperatură pe fața inferioară a epruvetei; \(Q \) – fluxul termic ce traversează epruveta prin dreptul zonei de testare; \(A \) – aria zonei de testare.

Rezultatele obținute în urma măsurărilor efectuate pe sistemele analizate sunt prezentate în tabelul următor.

<table>
<thead>
<tr>
<th>Denumire proba</th>
<th>Grosime, Mm</th>
<th>Rezistența termică R, (\text{m}^2\text{K}/\text{W})</th>
<th>Conductivitatea echivalentă a acoperirii testate, W/mK</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (placa suport)</td>
<td>12,53</td>
<td>0,062</td>
<td>0,202*</td>
</tr>
<tr>
<td>A2 (placa suport)</td>
<td>12,50</td>
<td>0,062</td>
<td>0,202*</td>
</tr>
<tr>
<td>A1 + produs testat</td>
<td>19,41</td>
<td>0,104</td>
<td>0,165</td>
</tr>
<tr>
<td>A2 + produs testat</td>
<td>20,26</td>
<td>0,113</td>
<td>0,152</td>
</tr>
<tr>
<td>A3 + produs testat</td>
<td>22,71</td>
<td>0,156</td>
<td>0,108</td>
</tr>
<tr>
<td>A4 + produs testat</td>
<td>18,80</td>
<td>0,128</td>
<td>0,095</td>
</tr>
<tr>
<td>A5 + produs testat</td>
<td>20,00</td>
<td>0,134</td>
<td>0,104</td>
</tr>
<tr>
<td>B (placa suport)</td>
<td>12,50</td>
<td>0,068</td>
<td>0,185*</td>
</tr>
<tr>
<td>B2 + produs testat</td>
<td>22,50</td>
<td>0,126</td>
<td>0,172</td>
</tr>
<tr>
<td>B3 + produs testat</td>
<td>25,00</td>
<td>0,139</td>
<td>0,175</td>
</tr>
</tbody>
</table>

* conductivitatea termică a epruvetei suport din gips-carton

Valorile mărimilor R (rezistența termică a epruvetei) și \(\lambda \) (conductivitatea termică a acoperirilor testate) sunt determinate pentru materialul de testat aflat la temperatura de 10 °C. Variațiile conductivității termice cu temperatura medie a materialului, în intervalul de temperaturi 10 ÷ 60 °C, sunt prezente în lucrare pentru toate testele efectuate.

Din analiza valorilor obținute în urma testelor efectuate pentru determinarea proprietăților de protecție termică ale sistemelor reies următoarele aspecte principale:
- Omogenitatea plăcilor de gips-carton pe care au fost aplicate cele șapte protecții;
- Fiecare dintre probele încercate prezintă caracteristici specifice materialelor de protecție termică deși grosimile de strat sunt mult mai mici comparativ cu cele ale materialelor tradiționale;

Analiza și interpretarea rezultatelor experimentale obținute în cadrul prezentei faze
Având în vedere multitudinea aspectelor studiate în această fază, analiza și interpretarea rezultatelor experimentale obținute s-a efectuat după următoarele trei direcții:

a. Sisteme multistrat aplicate pe mortar de ciment vs. pe gips-carton;
b. Sisteme multistrat vs. sisteme unistrat și
c. Potențialul termoizolator al sistemelor multistrat testate

a. Sisteme multistrat aplicate pe mortar de ciment vs. pe gips-carton

Analizând rezultatele obținute cu privire la principalele caracteristici fizico-chimice stabilite a fi studiate pe sistemele multistrat de tip CSFS-liant peliculogen aplicate pe cele două materiale-suport au reieșit următoarele aspecte:
- Grosimile medii totale ale sistemelor au fost în toate cazurile mai mari la aplicarea pe mortar de ciment decât pe gips-carton, ca urmare a rugozității mai mari a suprafeței primul material;
- Aderențele au fost, în cele mai multe cazuri, mai mari la aplicarea sistemelor pe mortar de ciment, ancorea materialului la suport fiind favorizată și de capacitatea de absorbție a structurii poroase a mortarului de ciment în contact cu materialul;
- Aderențele sistemelor la cele două tipuri de material-suport sunt similare doar în cazul în care aderențele sunt slabe, subunitare (cazul sistemelor tip CSFS-2421).

b. Sisteme multistrat vs. sisteme unistrat

Sub aspectul principalelor caracteristici fizico-chimice stabilite a fi studiate pe sistemele realizate rezultă că:
- Sistemele unistrat au fost definite în general prin: grosimii medii reduse, aderențe mai ridicate la suprafața-suport, caracter proponderent adeziv al ruperii protecției la smulgere, coeziune mai bună între straturi.
- Sistemele multistrat au fost definite în general prin: grosimii medii mari, aderențe mai scăzute la suprafața-suport, caracter proponderent sau exclusiv coeziv al ruperii protecției la smulgere, coeziune mai slabă între straturi.

c. Potențialul termoizolator al sistemelor multistrat testate

Pornind de la rezultatele obținute cu privire la caracteristicile termoizolatoare ale sistemelor multistrat testate, anume că fiecare dintre probele încercate prezintă caracteristici specifice materialelor de protecție termică deși grosimile de strat sunt mult mai mici comparativ cu cele ale materialelor tradiționale, obiectul prezentei analize fiind exclusiv sistemele pentru care s-au obținut cele mai mici valori ale conductivității termice (sistemele 2421a, 2415b și RMadd), rezultă următoarele aspecte:

• Proprietățile termoizolatoare nu sunt direct și în exclusivitate influențate de numărul de straturi a protecției, ci de caracterul poros, aerat al materialului tip CSFS-liant aplicat. Cele mai bune rezultate au fost obținute pe sisteme tristrat și nu din patru straturi,
• Caracteristicile termoizolatoare nu sunt direct și în exclusivitate influențate de grosimea totală medie, ci de asemenea, de caracterul poros, aerat al materialului tip CSFS-liant aplicat. Subliniind că fiecare dintre sistemele sus-menționate a fost realizat utilizând diferite rețete de bază, reține atenția faptul că primele trei cele mai bune rezultate au fost
obținute pe probe ale căror grosimi totale medii au variat între 3,15 – 5,11mm, în timp ce sistemul clasat abia pe locul al patrulea al conductivităților (0,152 W/mK) a avut o grosime totală medie de 3,88 mm.

- Proprietățile termoizolatoroare sunt direct influențate de caracterul poros al materialului/sistemului, caracter care, la randul său este dat în principal de amestecul CSFS-liant și în secundar de contribuția materialului vegetal înglobat, prin propria sa compoziție și structură. În sprijinul acestuia constatări stâ faptul că cea mai bună conductivitate termică a fost obținută de sistemul 2415a, care a conținut 2,5 A g adânc de CSFS alcătuit din doar două fracțiuni dimensionale, în timp ce pe locul doi s-a clasat sistemul 2415b, cu 2,5A g adânc din trei fracțiuni dimensionale, structura sa mai densă (consum specific mare) fiind compensată prin contribuția cantității mai mari de deșeu.

- Caracteristicile termoizolatoare ale sistemelor sunt influențate de natura cât mai poroasă a structurii materialului constituie, natură evidențiată prin caracterul coeziv al ruperei protecției, primele trei sisteme din clasamentul conductivităților termice prezentând o rupere coezivă la determinarea aderenței la suprafața de gips-carton.

6. Rezultate, stadiul realizării obiectivului fazei, concluzii și propuneri pentru continuarea proiectului

Referitor la stadiul de implementare a proiectului, la finalizarea celei de-a șasea faze a acestuia, se consideră că au fost îndeplinite în întregime rezultatele preconizate și fiștele stabilite pentru atingerea obiectivului propus, și anume:

- Elaborarea unui studiu privind aspecte actuale de referință ale valorificării în construcții a deșeurilor agricole vegetale (ligno)celulozice - cojile de semințe de floarea-soarelui. Caracteristici termice
- Elaborarea de sisteme multistrat din produse de finisare/protecție cu adânc din deșeuri vegetale rezultate la obținerea uleiurilor de floarea-soarelui (CSFS);
- Determinarea principalelor caracteristici fizico-mecanice (grosime, aderență la suport de mortar, gips-carton, s.a.) ale sistemelor multistrat obținute în cadrul actualei faze;
- Studierea coeziunii dintre straturile sistemelor multistrat realizate din produsele de finisare/protecție cu adânc din deșeuri vegetale rezultate la obținerea uleiurilor de floarea-soarelui (CSFS);
- Testarea proprietăților termoizolatoare ale sistemelor multistrat obținute în cadrul actualei faze;
- Diseminarea rezultatelor cercetării la: Cea de-a XVII-a ediție a Conferinței INCDC de cercetare în construcții, economia construcțiilor, arhitectură, urbanism și dezvoltare teritorială, Tradiție și inovare în urbanism, arhitectură și construcții.

Concluziile acestei faze a proiectului de cercetare sunt prezentate după cum urmează:

✓ Studiile și cercetările efectuate la nivel mondial și național susțin, pe criterii tehnice recunoscute prin complexitatea și interdisciplinaritatea lor, potențialul real de valorificare a diferitelor materiale vegetale, respectiv a deșeurilor aferente, în mod special a cojilor de semințe de floarea-soarelui, la obținerea de noul materiale inovatoare, performante, cu
utilizare în construcții (panouri și plăci pentru termoizolarea peretelelor și planșelor constructiilor, cărămizi refractare, piele de ceramică din amestecuri de argilă-cenușă din coji de semințe de floarea-soarelui ș.a.).

✓ În această fază au fost elaborate 12 sisteme multistrat de tip CSFS-liant care au fost aplicate atât pe suprafețe-suport de gips-carton cât și pe mortar de ciment, prezentate atât sub aspectul rețetelor de bază ale materialelor învătate obtaine, tip CSFS-liant, numărul de straturi pentru fiecare tip de sistem cât și detalii privind aplicarea fiecărei straturi în funcție de sistemul multistrat.

✓ Raportat la sistemele monostrat realizate în etapă anterioară a cercetării, sistemele multistrat au fost realizate în această fază urmând îmbunătățirea principalelor caracteristicilor fizico-mecanice: grosime totală, aderență la suprafața-suport și coeziunea dintre straturi;

✓ La analiza sistemelor multistrat cu adaos din deșeuri de coji de semințe de floarea-soarelui (CSFS) s-a urmărit influența următoarelor aspecte: natura suprafeței-suport (mortar de ciment și gips-carton), numărul de straturi ale sistemului, modul de punere în operă ca metodă de îmbunătăţire a aderenței la suport, coeziunea dintre straturi, conținutul de adaos, dimensiunea și numărul fracțiunilor dimensionale de adaos de CSFS înglobate în liant.

✓ Principalele diferențe dintre sistemele unistrat și cele multistrat au constat în faptul că:

- sistemele unistrat au fost definite în general prin grosimi totale medii reduse, aderențe mai ridicate la suprafața-suport, caracter proponderent adeziv al ruperilor protecției la smulgere, coeziune mai bună între straturi.
- sistemele multistrat au fost definite în general prin grosimi totale medii mari, aderențe mai scăzute la suprafața-suport, caracter proponderent sau exclusiv coeziv al ruperii protecției la smulgere, coeziune mai slabă între straturi.

✓ În urma testărilor proprietăților termoizolatoare reiese că fiecare dintre sistemele multistrat cu adaos de CSFS prezintă caracteristici specifice materialelor de protecție termică deși grosimile de strat sunt mult mai mici comparativ cu cele ale materialelor termoizolatoare tradiționale.

✓ Materialele tip CSFS-liant pelliculogen testate din punct de vedere al caracteristicilor termoizolatoare sunt relativ omogene, ceea ce asigură calitatea relativ constantă, respectiv repetabilitatea caracteristicilor specifice ale acestora, în condițiile utilizării lor în construcții, ca materiale învătate de finisare/protecție cu caracteristici termoizolatoare.

✓ Pentru sistemele multistrat de tip CSFS – liant pelliculogen, proprietățile termoizolatoare sunt determinate pe de o parte de caracterul aerat, afișat al structurii materialului cu adaos de CSFS, și pe de altă parte, de caracterul termoizolator al deșeului vegetal înglobat, din coji de semințe de floarea-soarelui.

✓ Caracterul aerat al materialului tip CSFS-liant pelliculogen este dat în principal de adaosurile alcătuite din trei fracțiuni dimensionale de deșeu (φ4 mm, φ6 mm și φ8 mm), într-o cantitate maximă care să permită o lucrabilitate corespunzătoare a amestecului sau de un adaos din două fracțiuni dimensionale (φ4 mm și φ6 mm), într-o cantitate relativ mai reduсată. Urmarind valorificarea pe această cale a unei cantități cât mai mari din deșeul de CSFS, este rentabilă realizarea de materiale inovatoare din prima categorie, cu atât mai mult cu cât
acestea au aderențe la mortar de ciment și gips-carton comparabile cu cele ale finisajelor tradiționale.

✓ O coeziune slabă între straturile sistemelor multistrat este un element care influențează favorabil proprietățile termoizolațioare ale sistemelor respective atât timp cât aderența la suport a structurii peliculogene multistratificate este mai mare de 1MPa.

Referitor la indicatorii asociați pentru monitorizare și evaluare este prezentată participarea la următoarele manifestări științifice pentru diseminarea rezultatelor cercetărilor efectuate, astfel:

- Cea de-a XVII-a ediție a Conferinței de cercetare în construcții, economia construcțiilor, arhitectură, urbanism și dezvoltare teritorială: Tradiție și inovare în urbanism, arhitectură și construcții, București – 10 rezumate, din care 5 în limba română și 5 în limba engleză și 1 articol în volumul conferinței.

Detaliile privind titlul comunicării, autorii și locul publicării rezumatelor/lucrărilor integrale sunt prezentate în continuare.

Diseminare rezultate la cea de-a XVII-a ediție a conferinței de cercetare în construcții, economia construcțiilor, arhitectură, urbanism și dezvoltare teritorială

Tradiție și inovare în urbanism, arhitectură și construcții

<table>
<thead>
<tr>
<th>Nr. crt</th>
<th>Titlu</th>
<th>Autori</th>
<th>Nr.pag.wol rezumate eng/rom/ Lucrare integrală</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspecte privind estimarea costurilor socio-economic rezultate din poluarea aerului în mediul interior</td>
<td>Lambrache S.</td>
<td>14/88</td>
</tr>
<tr>
<td>2</td>
<td>Evaluarea subproduselor industriale inerte ca materii sustenabile în aplicațiile ingineresti</td>
<td>Dobrescu C.F.</td>
<td>22/96</td>
</tr>
<tr>
<td>3</td>
<td>Anvelopă nZEB inovatoare integrând materiale de construcții tradiționale</td>
<td>Petcu C., Barbu-Mocănescu D., Vasile V.</td>
<td>46/120</td>
</tr>
<tr>
<td>4</td>
<td>Metode de valorificare a deșeurilor de tipul compostelor post-consum provenite din industria materialelor de construcții</td>
<td>Grigorașenco C.</td>
<td>48/122/59-62</td>
</tr>
<tr>
<td>5</td>
<td>Produs de finisare cu adaos din deșeu de coji de seminte de floarea-soarelui</td>
<td>Popa I., Mureșanu A.</td>
<td>64/138</td>
</tr>
</tbody>
</table>

De asemenea, au fost efectuate următoarele activități de pregătire a diseminării rezultatelor cercetărilor:

- finalizare și trimitere articol - lucrare integrală pentru Conferința INDOOR AIR 2020 - Comparative analysis of the particulate matter (PM) concentrations monitoring in some indoor spaces from Bucharest, Romania, autori: Vasilica Vasile, Mihaela Ion, Cristian Petcu
- finalizare și trimitere articol - lucrare integrală pentru Conferința BEYOND 2020 - Indoor air pollutants, comfort parameters and their interactions in the context of sustainable development of the built environment, autori: Vasilia Vasile, Mihaela Ion, Alina Dima
- finalizare și trimitere articol - lucrare integrală pentru Conferința Națională de Geotehnică și Fundații, cu titlul: Reutilizarea deșeurilor de sticlă ca soluție eco-sustenabilă la stabilizarea pământurilor argiloase, autor Cornelia-Florentina Dobrescu
- finalizare și trimitere articol în vederea publicării în Revista Construcțiilor (B+), cu titlul: The assessment of non-hazardous industrial by-products as sustainable materials in engineering applications, autor Cornelia-Florentina Dobrescu
- pregătire rezumate pentru EUROINVENT 2020, dintre care finalizate: Estimation of socio-economic costs resulting from air pollution in the indoor environment, autor Silviu Lambrache; Dynamic modeling of vibro-compaction process on granular soils, autor Cornelia-Florentina Dobrescu.

În total au fost concepute 10 rezumate, dintre care 5 în limba română și 5 în limba engleză, 1 articol-lucrare integrală în limba română publicat în volumul conferinței, 3 articole în limba engleză trimise la 3 manifestări științifice internaționale și 1 articol în limba engleză la o revistă categorie B+.

Avându-se în vedere rezultatele menționate, se poate concluziona că obiectivul fazei, referitor la Elaborarea de sisteme multistrat din produse de finisare/protecție cu adăos din deșeuri vegetale rezultate la obținerea uleiurilor de floarea soarelui. Testarea proprietăților termoizolatoare, a fost înregistrată în întregime, astfel încât se propune continuarea proiectului cu etapa următoare, ce are ca obiectiv Concepere model matematic multiparametric pentru evaluarea confortului termic și a calității aerului interior pentru diferite strategii de ventilare. Activități experimentale pe suportul S1 (sezon rece).

Responsabil proiect,
Ing. Vasilia Vasile